Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Agric Food Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600745

RESUMO

With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.

2.
J Hazard Mater ; 469: 133881, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422740

RESUMO

Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.


Assuntos
Ecossistema , Retardadores de Chama , Humanos , Bromo , Retardadores de Chama/análise , Gestão de Riscos , Solo/química
3.
J Hum Lact ; 40(1): 69-79, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38084709

RESUMO

BACKGROUND: Toxic trace elements could enter human milk through mothers' food consumption, drinking water, air, or incidental soil ingestion, and are of concern to the nursing infant. RESEARCH AIM: To determine the concentration of toxic trace elements (lead and arsenic) in Peruvian mothers' milk and their association with blood concentrations in their own infants 3-20 months old. METHOD: This exploratory, cross-sectional study, carried out in Peru, included breastfeeding mother/child dyads (N = 40). Following standardized protocols, biospecimens of human milk and child's blood were collected. RESULTS: Lead and arsenic concentrations in milk were above the method detection limits in 73% and 100% of samples with median concentrations of 0.26 µg/L (IQR = 0.10, 0.33 µg/L) and 0.73 µg/L (IQR = 0.63, 0.91 µg/L), respectively. Concentrations of lead and arsenic in blood were 2.05 µg/dL (SD = 1.35), and 1.43 µg/dl (geometric mean: SD = 1.39), respectively. Blood lead concentrations in 12.5% (n = 5) of the samples were above the U.S. Center for Disease Control and Prevention reference value (< 3.5 µg/dl), and over half of arsenic concentrations were above the acceptable levels of < 1.3 µg/dl (Mayo Clinic Interpretative Handbook). Our results showed that for every one-month increase in age, lead blood concentrations increased by 0.1 µg/dl (p = 0.023). Additionally, every 1 µg/L increase in the mother's milk arsenic was associated with a 1.40 µg/dl increase in the child's blood arsenic concentration. CONCLUSIONS: Implementing effective interventions to decrease the toxic exposure of reproductive-aged women is needed in Peru and worldwide.


Assuntos
Arsênio , Oligoelementos , Lactente , Criança , Humanos , Feminino , Adulto , Leite Humano , Chumbo , Aleitamento Materno , Peru , Mães , Estudos Transversais
4.
PLoS One ; 18(10): e0287151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37816015

RESUMO

OBJECTIVE: Pt-Mal-LHRH is a newly synthesized chemotherapeutic agent that was designed to selectively target the luteinizing hormone-releasing hormone (LHRH) receptor expressed by triple negative breast cancer (TNBC). The aim of this study was to evaluate the therapeutic dosing, tumor reduction efficacy, and selective distribution of Pt-Mal-LHRH in-vivo. METHODS AND RESULTS: LHRH tissue expression levels in-vivo were investigated using western blotting and LHRH was found to be increased in reproductive tissues (mammary, ovary, uterus). Further, Pt-Mal-LHRH was found to have increased TNBC tumor tissue platinum accumulation compared to carboplatin by inductively coupled plasma mass spectrometry analysis. The platinum family, compound carboplatin, was selected for comparison due to its similar chemical structure and molar equivalent doses were evaluated. Moreover, in-vivo distribution data indicated selective targeting of Pt-Mal-LHRH by enhanced reproductive tissue accumulation compared to carboplatin. Further, TNBC tumor growth was found to be significantly attenuated by Pt-Mal-LHRH compared to carboplatin in both the 4T1 and MDA-MB-231 tumor models. There was a significant reduction in tumor volume in the 4T1 tumor across Pt-Mal-LHRH doses (2.5-20 mg/kg/wk) and in the MDA-MB-231 tumor at the dose of 10 mg/kg/wk in models conducted by an independent contract testing laboratory. CONCLUSION: Our data indicates Pt-Mal-LHRH is a targeting chemotherapeutic agent towards the LHRH receptor and reduces TNBC tumor growth in-vivo. This study supports drug conjugation design models using the LHRH hormone for chemotherapeutic delivery as Pt-Mal-LHRH was found to be a more selective and efficacious than carboplatin. Further examination of Pt-Mal-LHRH is warranted for its clinical use in TNBCs, along with, other reproductive cancers overexpressing the LHRH receptor.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Receptores LHRH , Neoplasias de Mama Triplo Negativas/patologia , Carboplatina/uso terapêutico , Platina/uso terapêutico , Hormônio Liberador de Gonadotropina , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico
5.
J Appl Commun Res ; 51(4): 360-379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720913

RESUMO

In the coal mining regions of Eastern Kentucky, access to potable water has been diminished due to industrial pollution and aging infrastructure. Current communications regarding contaminated water are often too inaccessible and too infrequent to appropriately address the issues in target communities. To explore possible improvements to the community's communication infrastructure, the researchers explored what types of stories should be used to communicate about water quality risks, who should communicate about these stories, and how these stories should be communicated. Researchers enlisted a key community member to conduct 24 individual interviews with community members, using snowball sampling. Open and axial coding was used to conduct a constant comparative analysis of the data for emergent themes. Analyzing the verbatim interviews, the researchers concluded communication infrastructure should be enhanced to engage the public about water quality risks. Risk messaging should share water quality information through stories that are designed to be easily digested and frequently distributed using laypeople's terms, visuals, graphs, and maps. These stories should be shared using an integrated communication infrastructure where key community storytellers, such as local news, social media, and interstitial agents, work together to share risk information across platforms and channels.

6.
Inorg Chem ; 62(28): 10940-10954, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37405779

RESUMO

While cancer cells rely heavily upon glycolysis to meet their energetic needs, reducing the importance of mitochondrial oxidative respiration processes, more recent studies have shown that their mitochondria still play an active role in the bioenergetics of metastases. This feature, in combination with the regulatory role of mitochondria in cell death, has made this organelle an attractive anticancer target. Here, we report the synthesis and biological characterization of triarylphosphine-containing bipyridyl ruthenium (Ru(II)) compounds and found distinct differences as a function of the substituents on the bipyridine and phosphine ligands. 4,4'-Dimethylbipyridyl-substituted compound 3 exhibited especially high depolarizing capabilities, and this depolarization was selective for the mitochondrial membrane and occurred within minutes of treatment in cancer cells. The Ru(II) complex 3 exhibited an 8-fold increase in depolarized mitochondrial membranes, as determined by flow cytometry, which compares favorably to the 2-fold increase observed by carbonyl cyanide chlorophenylhydrazone (CCCP), a proton ionophore that shuttles protons across membranes, depositing them into the mitochondrial matrix. Fluorination of the triphenylphosphine ligand provided a scaffold that maintained potency against a range of cancer cells but avoided inducing toxicity in zebrafish embryos at higher concentrations, displaying the potential of these Ru(II) compounds for anticancer applications. This study provides essential information regarding the role of ancillary ligands for the anticancer activity of Ru(II) coordination compounds that induce mitochondrial dysfunction.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Animais , 2,2'-Dipiridil , Ligantes , Peixe-Zebra , Mitocôndrias , Rutênio/farmacologia , Rutênio/metabolismo
7.
Environ Sci Technol ; 57(24): 8943-8953, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285309

RESUMO

The effects and mechanisms of zinc oxide nanoparticles (ZnO NPs) and their aging products, sulfidized (s-) ZnO NPs, on the carbon cycling in the legume rhizosphere are still unclear. We observed that, after 30 days of cultivation, in the rhizosphere soil of Medicago truncatula, under ZnO NP and s-ZnO NP treatments, the dissolved organic carbon (DOC) concentrations were significantly increased by 1.8- to 2.4-fold compared to Zn2+ treatments, although the soil organic matter (SOM) contents did not change significantly. Compared to Zn2+ additions, the additions of NPs significantly induced the production of root metabolites such as carboxylic acids and amino acids and also stimulated the growth of microbes involved in the degradations of plant-derived and recalcitrant SOM, such as bacteria genera RB41 and Bryobacter, and fungi genus Conocybe. The bacterial co-occurrence networks indicated that microbes associated with SOM formation and decomposition were significantly increased under NP treatments. The adsorption of NPs by roots, the generation of root metabolites (e.g., carboxylic acid and amino acid), and enrichment of key taxa (e.g., RB41 and Gaiella) were the major mechanisms by which ZnO NPs and s-ZnO NPs drove DOC release and SOM decomposition in the rhizosphere. These results provide new perspectives on the effect of ZnO NPs on agroecosystem functions in soil-plant systems.


Assuntos
Fabaceae , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Fabaceae/metabolismo , Rizosfera , Nanopartículas/química , Plantas/metabolismo , Bactérias/metabolismo , Solo/química
8.
J Environ Qual ; 52(4): 873-885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37145888

RESUMO

Phosphorus (P) budgets can be useful tools for understanding nutrient cycling and quantifying the effectiveness of nutrient management planning and policies; however, uncertainties in agricultural nutrient budgets are not often quantitatively assessed. The objective of this study was to evaluate uncertainty in P fluxes (fertilizer/manure application, atmospheric deposition, irrigation, crop removal, surface runoff, and leachate) and the propagation of these uncertainties to annual P budgets. Data from 56 cropping systems in the P-FLUX database, which spans diverse rotations and landscapes across the United States and Canada, were evaluated. Results showed that across cropping systems, average annual P budget was 22.4 kg P ha-1 (range = -32.7 to 340.6 kg P ha-1 ), with an average uncertainty of 13.1 kg P ha-1 (range = 1.0-87.1 kg P ha-1 ). Fertilizer/manure application and crop removal were the largest P fluxes across cropping systems and, as a result, accounted for the largest fraction of uncertainty in annual budgets (61% and 37%, respectively). Remaining fluxes individually accounted for <2% of the budget uncertainty. Uncertainties were large enough that determining whether P was increasing, decreasing, or not changing was inconclusive in 39% of the budgets evaluated. Findings indicate that more careful and/or direct measurements of inputs, outputs, and stocks are needed. Recommendations for minimizing uncertainty in P budgets based on the results of the study were developed. Quantifying, communicating, and constraining uncertainty in budgets among production systems and multiple geographies is critical for engaging stakeholders, developing local and national strategies for P reduction, and informing policy.


Assuntos
Fertilizantes , Fósforo , Esterco , Incerteza , Agricultura
9.
RSC Chem Biol ; 4(5): 344-353, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37181632

RESUMO

Ruthenium complexes are often investigated as potential replacements for platinum-based chemotherapeutics in hopes of identifying systems with improved tolerability in vivo and reduced susceptibility to cellular resistance mechanisms. Inspired by phenanthriplatin, a non-traditional platinum agent that contains only one labile ligand, monofunctional ruthenium polypyridyl agents have been developed, but until now, few demonstrated promising anticancer activity. Here we introduce a potent new scaffold, based on [Ru(tpy)(dip)Cl]Cl (tpy = 2,2':6',2''-terpyridine and dip = 4,7-diphenyl-1,10-phenanthroline) in pursuit of effective Ru(ii)-based monofunctional agents. Notably, the extension of the terpyridine at the 4' position with an aromatic ring resulted in a molecule that was cytotoxic in several cancer cell lines with sub-micromolar IC50 values, induced ribosome biogenesis stress, and exhibited minimal zebrafish embryo toxicity. This study demonstrates the successful design of a Ru(ii) agent that mimics many of the biological effects and phenotypes seen with phenanthriplatin, despite numerous differences in both the ligands and metal center structure.

10.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047139

RESUMO

Multigenerational and transgenerational reproductive toxicity in a model nematode Caenorhabditis elegans has been shown previously after exposure to silver nanoparticles (Ag-NPs) and silver ions (AgNO3). However, there is a limited understanding on the transfer mechanism of the increased reproductive sensitivity to subsequent generations. This study examines changes in DNA methylation at epigenetic mark N6-methyl-2'-deoxyadenosine (6mdA) after multigenerational exposure of C. elegans to pristine and transformed-via-sulfidation Ag-NPs and AgNO3. Levels of 6mdA were measured as 6mdA/dA ratios prior to C. elegans exposure (F0) after two generations of exposure (F2) and two generations of rescue (F4) using high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS). Although both AgNO3 and Ag-NPs induced multigenerational reproductive toxicity, only AgNO3 exposure caused a significant increase in global 6mdA levels after exposures (F2). However, after two generations of rescue (F4), the 6mdA levels in AgNO3 treatment returned to F0 levels, suggesting other epigenetic modifications may be also involved. No significant changes in global DNA methylation levels were observed after exposure to pristine and sulfidized sAg-NPs. This study demonstrates the involvement of an epigenetic mark in AgNO3 reproductive toxicity and suggests that AgNO3 and Ag-NPs may have different toxicity mechanisms.


Assuntos
Caenorhabditis elegans , Nanopartículas Metálicas , Animais , Caenorhabditis elegans/genética , Nitrato de Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Metilação de DNA , Cromatografia Líquida , Prata/toxicidade , Espectrometria de Massas em Tandem , DNA , Adenina
11.
Sci Total Environ ; 871: 161926, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739022

RESUMO

Silver (Ag), a naturally occurring, rare and precious metal, is found in major minerals such as cerargyrite (AgCl), pyrargyrite (Ag3SbS3), proustite (Ag3AsS3), and stephanite (Ag5SbS4). From these minerals, Ag is released into soil and water through the weathering of rocks and mining activities. Silver also enters the environment by manufacturing and using Ag compounds in electroplating and photography, catalysts, medical devices, and batteries. With >400 t of Ag NPs produced yearly, Ag NPs have become a rapidly growing source of anthropogenic Ag input in the environment. In soils and natural waters, most Ag is sorbed to soil particles and sediments and precipitated as oxides, carbonates, sulphides, chlorides and hydroxides. Silver and its compounds are toxic, and humans and other animals are exposed to Ag through inhalation of air and the consumption of Ag-contaminated food and drinking water. Remediation of Ag-contaminated soil and water sources can be achieved through immobilization and mobilization processes. Immobilization of Ag in soil and groundwater reduces the bioavailability and mobility of Ag, while mobilization of Ag in the soil can facilitate its removal. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices and regulatory mandates of Ag contamination in complex environmental settings, including soil and aquatic ecosystems. Knowledge gaps and future research priorities in the sustainable management of Ag contamination in these settings are also discussed.


Assuntos
Prata , Poluentes do Solo , Animais , Humanos , Prata/toxicidade , Ecossistema , Solo/química , Poluentes do Solo/análise , Gestão de Riscos , Minerais
12.
Sci Total Environ ; 865: 161307, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36596421

RESUMO

Research utilizing the model soil nematode Caenorhabditis elegans has revealed that agriculturally relevant nanoparticles (NP), such as zinc oxide NP (ZnONP), cause toxicity at low concentrations and disrupt molecular pathways of pathogen resistance. However, in most nanotoxicity assessments, model organisms are exposed to a single stressor but in nature organisms are affected by multiple sources of stress, including infections, which might exacerbate or mitigate negative effects of NP exposure. Thus, to expand our understanding of the environmental consequences of released NP, this project examined the synergistic/antagonistic effects of ZnONP on C. elegans infected with a common pathogen, Klebsiella pneumoniae. Individual exposures of C. elegans to ZnONP, zinc sulfate (Zn2+ ions) or K. pneumoniae significantly decreased nematode reproduction compared to controls. To assess the combined stress of ZnONP and K. pneumoniae, C. elegans were exposed to equitoxic EC30 concentrations of ZnONP (or Zn ions) and K. pneumoniae. After the combined exposure there was no decrease in reproduction. This complete elimination of reproductive toxicity was unexpected because exposures were conducted at EC30 Zn concentrations and reproductive toxicity due to Zn should have occurred. Amelioration of the pathogen effects by Zn are partially explained by the Zn impact on the K. pneumoniae biofilm. Quantitative assessments showed that external biofilm production and estimated colony forming units (CFU) of K. pneumoniae within the nematodes were significantly decreased. Taken together, our results suggest that during the combined exposure of C. elegans to both stressors Zn in ionic or particulate form inhibits K. pneumoniae ability to colonize nematode's intestine through decreasing pathogen biofilm formation. This highlights the unpredictable nature of combined stressor effects, calling into question the utility of exposures in simplified laboratory media.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Caenorhabditis elegans , Óxido de Zinco/farmacologia , Klebsiella pneumoniae , Solo , Nanopartículas/toxicidade , Íons/metabolismo
13.
J Environ Public Health ; 2021: 7283514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335794

RESUMO

This exploratory, descriptive cohort study (N = 60) determined lead (Pb) and arsenic (As) blood concentrations in Peruvian children and their association with hematological parameters of iron-deficient anemia (IDA) and anthropometric measurement. The mean age of children was 10.8 months (SD = 4.7) and ranged from 3 to 24 months old. Anemia (Hb levels below 10.5 g/dL) was found in 20% of this cohort. Additionally, microcytosis (MCV < 70 fL) was present in 54%, and hypochromia (MCH < 23 pg) in 42% of the group of children. Chi-square analysis showed that 88% of the children with anemia also had microcytosis and hypochromia (p < 0.001). Pb and As were detected in 100% of the infants' blood samples, and the concentrations were significantly higher in older infants than in younger ones. Pb and As were not associated with the sex, anthropomorphic parameters, or infant hemogram changes. Infants who received iron supplementation were 87% less likely to have low Hb compared with those who did not (OR = 0.13, 95% CI = 0.02-0.88, p=0.04). Herbal tea intake was significantly associated with microcytosis and hypochromia. Our finding uncovered that hematological parameters for anemia are modified in Peruvian children with high levels of microcytosis and hypochromia. Concentrations of Pb and As were above method detection limits in all Peruvian children, but these were not associated with IDA or anthropometric measurements. A large study, including other variables, would benefit from allowing a more complex model predicting anemia in Peruvian children.


Assuntos
Anemia Ferropriva , Arsênio , Chumbo , Anemia Ferropriva/epidemiologia , Arsênio/sangue , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Chumbo/sangue , Masculino , Peru/epidemiologia
14.
Pestic Biochem Physiol ; 177: 104906, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34301367

RESUMO

The response of insects to orally delivered double-stranded RNA ranges widely among taxa studied to date. Long dsRNA does elicit a response in stink bugs but the dose required to achieve an effect is relatively high compared to other insects such Colorado potato beetle or western corn rootworm. Improving the delivery of dsRNA to stink bugs will improve the likelihood of using RNA-based biocontrols for the management of these economically important pests. Short hairpin RNA (shRNA) is a useful molecule with which to test improvements in the delivery of double stranded RNA in the neotropical brown stink bug, Euschistus heros, since shRNA alone does not elicit a clear effect like that for long dsRNA. Here, we show for the first time the oral delivery of shRNA triggering RNA interference (RNAi) in E. heros using 4 nm cerium oxide nanoparticles (CeO2 NPs) coated with diethylamioethyl dextran (Dextran-DEAE) as a carrier. We identified particle properties (coating composition and degree of substitution, hydrodynamic diameter, and zeta potential) and shRNA loading rates (Ce:shRNA mass ratio) that resulted in successful transcript reduction or RNAi. When the Z-average diameter of CeO2 Dextran-DEAE-shRNA NP complex was less than 250 nm and the zeta potential was in the 15-25 mV range (Ce:shRNA mass ratio of 0.7:1), significant mortality attributed to RNAi was observed with a shRNA concentration in feeding solution of 250 ng/µl. The degradation of the targeted troponin transcript by NP-delivered shRNA was equivalent to that observed with long dsRNA, while naked shRNA transcript reduction was not statistically significant. Elemental mapping by synchrotron X-ray fluorescence microprobe confirmed uptake and distribution of Ce throughout the body with the highest concentrations found in gut tissue. Taken together, our results suggest that a nanoparticle delivery system can improve the delivery of RNA-based biocontrols to E. heros, and therefore its attractiveness as an application in the management of this important pest in soybean production.


Assuntos
Heterópteros , Nanoestruturas , Animais , Heterópteros/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética
15.
Beilstein J Nanotechnol ; 12: 525-540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136328

RESUMO

Cerium oxide nanoparticles, so-called nanoceria, are engineered nanomaterials prepared by many methods that result in products with varying physicochemical properties and applications. Those used industrially are often calcined, an example is NM-212. Other nanoceria have beneficial pharmaceutical properties and are often prepared by solvothermal synthesis. Solvothermally synthesized nanoceria dissolve in acidic environments, accelerated by carboxylic acids. NM-212 dissolution has been reported to be minimal. To gain insight into the role of high-temperature exposure on nanoceria dissolution, product susceptibility to carboxylic acid-accelerated dissolution, and its effect on biological and catalytic properties of nanoceria, the dissolution of NM-212, a solvothermally synthesized nanoceria material, and a calcined form of the solvothermally synthesized nanoceria material (ca. 40, 4, and 40 nm diameter, respectively) was investigated. Two dissolution methods were employed. Dissolution of NM-212 and the calcined nanoceria was much slower than that of the non-calcined form. The decreased solubility was attributed to an increased amount of surface Ce4+ species induced by the high temperature. Carboxylic acids doubled the very low dissolution rate of NM-212. Nanoceria dissolution releases Ce3+ ions, which, with phosphate, form insoluble cerium phosphate in vivo. The addition of immobilized phosphates did not accelerate nanoceria dissolution, suggesting that the Ce3+ ion release during nanoceria dissolution was phosphate-independent. Smaller particles resulting from partial nanoceria dissolution led to less cellular protein carbonyl formation, attributed to an increased amount of surface Ce3+ species. Surface reactivity was greater for the solvothermally synthesized nanoceria, which had more Ce3+ species at the surface. The results show that temperature treatment of nanoceria can produce significant differences in solubility and surface cerium valence, which affect the biological and catalytic properties of nanoceria.

16.
Environ Sci Technol ; 55(20): 13532-13540, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33999618

RESUMO

This study used ZnO nanoparticles (NPs) as seed treatments and as soil amendments to enhance Zn concentrations in wheat grain. In the seed treatment experiment, seeds were treated with dextran coated (DEX-ZnO) and bare ZnO NP suspensions, in addition to ZnSO4, at 500 mg Zn/L. In the soil amendment experiment, soil pH was adjusted to 6 and 8, then soils were spiked with 15 mg Zn/kg soil in the form of DEX-ZnO and bare ZnO NPs, as well as ZnSO4. For the seed treatment, ZnO NPs resulted in significantly higher grain Zn concentration 96.9 ± 25.4 compared to (72.2 ± 25.4), (78.3 ± 24.3), and (81.0 ± 19.4) mg Zn/kg in the control, ZnSO4, and DEX-ZnO NPs treatments, respectively. In the soil amendment experiment, grain Zn concentrations were the same across all Zn treatments regardless of soil pH. Plants grown at pH 6 had higher Zn accumulation and leaf and stem biomass compared to pH 8. This study demonstrates that treatment of seeds with ZnO NPs can enhance Zn content of grain using far less Zn than is typically used for soil amendments. This may help reduce the environmental impact of Zn fertilization.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Polímeros , Solo , Triticum
17.
Toxicol Sci ; 180(2): 262-276, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33483743

RESUMO

Cadmium exposure is ubiquitous and has been linked to diseases including cancers and reproductive defects. Since cadmium is nonmutagenic, it is thought to exert its gene dysregulatory effects through epigenetic reprogramming. Several studies have implicated germline exposure to cadmium in developmental reprogramming. However, most of these studies have focused on maternal exposure, while the impact on sperm fertility and disease susceptibility has received less attention. In this study, we used reduced representation bisulfite sequencing to comprehensively investigate the impact of chronic cadmium exposure on mouse spermatozoa DNA methylation. Adult male C57BL/J6 mice were provided water with or without cadmium chloride for 9 weeks. Sperm, testes, liver, and kidney tissues were collected at the end of the treatment period. Cadmium exposure was confirmed through gene expression analysis of metallothionein-1 and 2, 2 well-known cadmium-induced genes. Analysis of sperm DNA methylation changes revealed 1788 differentially methylated sites present at regulatory regions in sperm of mice exposed to cadmium compared with vehicle (control) mice. Furthermore, most of these differential methylation changes positively correlated with changes in gene expression at both the transcription initiation stage as well as the splicing levels. Interestingly, the genes targeted by cadmium exposure are involved in several critical developmental processes. Our results present a comprehensive analysis of the sperm methylome in response to chronic cadmium exposure. These data, therefore, highlight a foundational framework to study gene expression patterns that may affect fertility in the exposed individual as well as their offspring, through paternal inheritance.


Assuntos
Cádmio , Espermatozoides , Animais , Cádmio/toxicidade , Metilação de DNA , Epigênese Genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodução , Espermatozoides/metabolismo
18.
J Hazard Mater ; 405: 124258, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153791

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are attracting much interest due to their potential toxicity and ubiquity in consumer products. However, understanding of pristine and transformed ZnO NPs impact on soil microbial communities is still limited. Here, we explored changes in the microbial communities of soils treated with pristine and sulfidized ZnO NPs (s-ZnO NPs), and their corresponding Zn ions (ZnSO4) for 30 and 90 days exposures at 100 and 500 mg Zn kg-1. The similarity in bacterial community responses was observed between ZnO NPs and s-ZnO NPs, and these Zn treatments significantly affected the bacterial communities at 90 days, which exhibited distinct patterns compared to ZnSO4. The single-time tested DTPA and H2O extractable Zn ions could not fully explain the observed ZnO NPs and s-ZnO NPs impact on bacterial communities. The two most dominant phylum Nitrospirae and Actinobacteria, associated with the reduction of NH4+-N and dissolved organic carbon, demonstrated significant changes in soils exposed to ZnO NPs and s-ZnO NPs. This suggests the potential long-term impact of transformed ZnO NPs on soil carbon and nitrogen cycling. For fungal communities, we did not find the distinct response patterns of fungal communities between nanoparticulate and ionic Zn exposures.


Assuntos
Nanopartículas Metálicas , Micobioma , Nanopartículas , Óxido de Zinco , Bactérias , Íons , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Solo , Zinco/toxicidade , Óxido de Zinco/toxicidade
19.
PLoS One ; 15(11): e0240988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170853

RESUMO

BACKGROUND: Although there are several hypothesized etiologies of Mesoamerican Nephropathy (MeN), evidence has not yet pointed to the underlying cause. Exposure to various trace elements can cause the clinical features observed in MeN. METHODS AND FINDINGS: We measured 15 trace elements, including heavy metals, in renal case-patients (n = 18) and healthy controls (n = 36) in a MeN high-risk region of Nicaragua. Toenails clippings from study participants were analyzed using inductively coupled plasma mass spectrometry. A case-control analysis was performed, and concentrations were also analyzed over participant characteristics and clinical parameters. Nickel (Ni) concentrations were significantly higher in toenails from cases (1.554 mg/kg [0.176-42.647]) than controls (0.208 mg/kg [0.055-51.235]; p<0.001). Ni concentrations correlated positively with serum creatinine levels (p = 0.001) and negatively with eGFR (p = 0.001). Greater Ni exposure was also associated with higher leukocyte (p = 0.001) and neutrophil (p = 0.003) counts, fewer lymphocytes (p = 0.003), and lower hemoglobin (p = 0.004) and hematocrit (p = 0.011). CONCLUSIONS: Low-dose, chronic environmental exposure to Ni is a possible health risk in this setting. Ni intoxication and resulting systemic and renal effects could explain the clinical signs observed during early MeN. This study provides compelling evidence for a role of Ni in the acute renal impairment observed in this MeN high-risk population. Additional work to assess exposure levels in a larger and heterogeneous population, identify environmental sources of Ni and exposure pathways, and evaluate the link between Ni and MeN pathogenesis are urgently needed.


Assuntos
Injúria Renal Aguda/etiologia , Níquel/toxicidade , Oligoelementos/toxicidade , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/fisiopatologia , Adulto , Doenças dos Trabalhadores Agrícolas/epidemiologia , Doenças dos Trabalhadores Agrícolas/etiologia , Doenças dos Trabalhadores Agrícolas/fisiopatologia , Estudos de Casos e Controles , Creatinina/sangue , Doenças Endêmicas , Fazendeiros , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Unhas/química , Nicarágua/epidemiologia , Níquel/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia , Oligoelementos/análise , Adulto Jovem
20.
Oecologia ; 194(4): 529-539, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725300

RESUMO

Species distributions are dependent on interactions with abiotic and biotic factors in the environment. Abiotic factors like temperature, moisture, and soil nutrients, along with biotic interactions within and between species, can all have strong influences on spatial distributions of plants and animals. Terrestrial Antarctic habitats are relatively simple and thus good systems to study ecological factors that drive species distributions and abundance. However, these environments are also sensitive to perturbation, and thus understanding the ecological drivers of species distribution is critical for predicting responses to environmental change. The Antarctic midge, Belgica antarctica, is the only endemic insect on the continent and has a patchy distribution along the Antarctic Peninsula. While its life history and physiology are well studied, factors that underlie variation in population density within its range are unknown. Previous work on Antarctic microfauna indicates that distribution over broad scales is primarily regulated by soil moisture, nitrogen content, and the presence of suitable plant life, but whether these patterns are true over smaller spatial scales has not been investigated. Here we sampled midges across five islands on the Antarctic Peninsula and tested a series of hypotheses to determine the relative influences of abiotic and biotic factors on midge abundance. While historical literature suggests that Antarctic organisms are limited by the abiotic environment, our best-supported hypothesis indicated that abundance is predicted by a combination of abiotic and biotic conditions. Our results are consistent with a growing body of literature that biotic interactions are more important in Antarctic ecosystems than historically appreciated.


Assuntos
Ecossistema , Solo , Animais , Regiões Antárticas , Ilhas , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...